Evolucion del Calculo Infinitesimal

By hgabb
  • Democrito
    460 BCE

    Democrito

    Calculó el volumen de pirámides y conos considerándolos formados por un número infinito de secciones de grosor e infinitesimal (infinitamente pequeños).
  • Eudoxo
    400 BCE

    Eudoxo

    Inventa el metodo de exhaucion por el cual podían lograr la cuadratura de algunas regiones delimitadas por curvas.
  • Arquimedes
    287 BCE

    Arquimedes

    Perfeccionó el método de Exhausción y demostró la cuadratura del segmento de una parábola mediante una descomposición exhaustiva del segmento parabólico por medio de triángulos.
  • Galileo Galilei
    1564

    Galileo Galilei

    Justificó que el espacio recorrido por un móvil era igual al área comprendida entre la curva de la velocidad y el eje del tiempo. Esta idea es muy importante, dado que unificaba dos problemas de orígenes bien diferentes: la longitud de una curva y el área bajo otra.
  • Johannes Kepler
    1571

    Johannes Kepler

    Estudio la manera de hallar el volumen de cuerpos de revolución, descomponiéndolos en partes indivisibles de la forma adecuada a cada problema. Así determino el volumen de más de noventa cuerpos diferentes.
  • Bonaventura Cavalieri

    Bonaventura Cavalieri

    Utilizó de manera sistemática técnicas infinitesimales para resolver problemas. Comparó las ´áreas (o volúmenes) de los “indivisibles” que forman una figura con los que forman otra, deduciendo que si aquellas se hallaban en una determinada relación, también lo estaban en esa misma las de las figuras correspondientes. Además, descompuso las figuras en indivisibles de magnitud inferior. Así, para calcular volúmenes, cortaba los cuerpos y medía las ´áreas de las secciones.
  • John Wallis

    John Wallis

    Publicó el tratado Arithmetica infinitorum (La Aritmética de los infinitos) en el que aritmetizaba el método de los indivisibles de Cavalieri, ademas introdujo el símbolo del “lazo del amor”, ∞, con el significado de infinito.
  • Isaac Newton

    Isaac Newton

    introdujo las “fluxiones”, que es lo que hoy se conoce con el nombre de derivadas. Imaginó una curva como una ecuación f(x,y) = 0, donde x e y eran funciones del tiempo; es decir, partía de la imagen cinemática de curva como trayectoria de un móvil. Para estudiar el cálculo del ´área bajo una curva por métodos de anti diferenciación, primero investigó la variación del ´área al variar la abscisa. Así obtuvo el teorema fundamental del cálculo
  • Gottfried Leibniz

    Gottfried Leibniz

    Creó un lenguaje mediante el cual, por sencillas manipulaciones, se obtienen fórmulas que resultan ser las verdaderas y que, naturalmente, hay que comprobar.
    Sus primeros estudios matemáticos versan sobre progresiones aritméticas de orden superior, en concreto, sobre como la suma de las diferencias está relacionada con los términos de la sucesión. De hecho, este es el origen de su desarrollo del cálculo: obtener y calcular sumas.
  • Euler

    Euler

    Realizó contribuciones importantes a varias ramas de la matemática pura y aplicada y de la física. Para él, una función era una “expresión analítica” en la que interviniesen las variables y, eventualmente, algunas constantes. Con ello entendía que una expresión en la que, no solo había operaciones algebraicas, sino también el paso al límite de sucesiones, sumas de series y las funciones elementales conocidas.
  • Bernard Bolzano

    Bernard Bolzano

    Expuso correctamente todas las ideas necesarias para el desarrollo del cálculo. Así, llegó a admitir la existencia de los números infinitamente grandes y de los infinitamente pequeños, el axioma del extremo superior y el hoy llamado criterio de Cauchy para la convergencia de una sucesión de números reales.
  • Bernhard Riemann

    Bernhard Riemann

    Da la primera condición de integrabilidad y ademas da un ejemplo de función integrable que tiene infinitas discontinuidades en cualquier intervalo, por pequeño que sea.