-
Elaboraron las tablas de multiplicación, manejaron los quebrados, números cuadrados, raíces cuadradas y cúbicas exactas, ecuaciones de tercer grado. Llegando a influir en los egipcios, griegos e indios.
-
Se dan soluciones a problemas logarítmicos, sistemas de ecuaciones y se implemento el concepto de número inverso. Llegaron al cálculo de sumas de progresiones.
-
Implementaron un sistema de numeración, con jeroglíficos.
-
Las enunciaciones de Zenón de Elea, es lo más antiguo que se tiene del pensamiento infinitesimal.
-
Demócrito de Abdera, intenta dar respuesta a problemas que implicaban el concepto de límite, a través de la unificación de la filosofía y las matemáticas.
Así es como se empieza a concebir el método al límite. -
Entre otros filósofos y matemáticos, está Euxodo de Cnido, cuyo trabajo en resolución y demostración en temas de trigonometría, fue ayuda para el cálculo de (pi,3.1415...) y el método de exhaución.
-
Arquímides de Siracusa, ha sido uno de los más grandes matemáticos de todos los tiempos, a él se le debe el tornillo, el engranaje, las catapultas militares, métodos para áreas y volúmenes. Los avances de Arquímides fueron tomados hasta 2000 años después porpersonas como Newton y Leibniz
-
Se les reconoce por los avances en el concepto de límite, números racionales, irracionales, reales positivos y el desarrollo de la trigonometría.
-
Se puede destacar también en este siglo, sobre Francesco Cavalieri y su teoría de los indivisibles, que trata sobre las magnitudes geométricas compuestas por un número infinito de elementos indivisibles (premisa importantísima para el cálculo integral) llegando a ser considerado como precursor del análisis infinitesimal moderno.
Por otro lado Torricelli (también discípulo de Galileo) utilizó métodos infinitesimales para conocer el centro isogónico. -
La acumulación de análisis, asimilación teórica del cálculo diferencial e integral y teoría de series, terminó en la creación del cálculo infinitesimal, ya contando con álgebra y nociones de variables.
La investigación en problemas de cuadratura y búsqueda de tangentes, son resultado de los avances en la mecánica, astronomía y física.
Aquí figuran personajes importantes como Blaise Pascal, John Wallis, René Descartes, entre otros. -
Johanes Kepler, contribuyó al cálculo infinitesimal, estimular el uso de los logaritmos en los cálculos.
Entre sus avances, advirtió sobre el efecto de la luna sobre las mareas. -
Fermat, Roberval y Torriclelli, casi simúltaneamente indagaron más profundamente en los conceptos infinitesimales.
Fermat fue el más destacado, estudiando los máximos y mínimos en las funciones, hasta consagrarse como el padre del cálculo diferencial. -
...se mueve
A pesar de la controversial historia entre Galileo Galilei, precisó más en las formulaciones de las leyes de Newton, para comprender temás de mecánica, sobre todo el movimiento. -
De entre todos los Bernoulli, Johann publicó el primer libro de texto de cálculo infinitesimal. El cuál fue atribuido en otra edición a L'hópital
-
Gottfried Leibniz, matemático y contribuyente a la lógica simbólica, máquina de Pascal y la invención del cálculo. Hizo su primera publicación precisamente sobre esta última contibución
-
Los avances de Newton, estaban siendo publicados, gradualmente hasta ese año, en el que publica su invención que ayudó enormemente a inmortalizarlo, principia matemática, que habla sobre el cálculo infinitesimal.
-
Se publica la obra de Taylor "Los métodos de incrementación directa e inversa", donde se habla de la serie que lleva su nombre, haciendo del cálculo de las diferencias finitas una rama de las matemáticas.
Después MacLaurin en "el tratado de las fluxiones", donde él también introduce su serie, (caso particular de las series de Taylor) -
La etapa de entre s. XVII y XIX, se caracterizan por avances; resolución de ecuaciones, radicales, concepto de grupo, geometría hiperbólica no euclidana, optimización, multiplicadores de Lagrange, se esclarecieron las ramas (ecuaciones diferenciales, teoría de funciones de variable real y compleja), análisis numérico, creando en conjunto los fundamentos para la teoría de límites y funciones.
Entre todos estos avances hay presntes nombres como: D'Alembert, Lagrange, Laplace y Gauss. -
Después de Newton y Leibniz, el sobresale por publicación de "Introducción al análisis de las magnitudes infinitamente pequeñas", entre sus otra apurtaciones como la notació f(x), la identidad que lleva su nombre entre otras de sus más de 860 publicaciones originales.
-
Nace Bolzano, pionero en el análisis de funciones, (convergencia de sucesiones, continuidad en funciones, entre otros criterios, como el teorema que lleva su nombre)
-
La teoría de limites desarrollada por Cauchy, precisa los conceptos de función, límite y continuidad, casi como son en la actualidad
-
Las definiciones de límites y continuidad actuales se definieron por Weierstrass, para posteriormente demostrar teoremas, relacionados con el cálculo diferencial, convergencia de series, funciones periódicas, análisis complejo entre otras aportaciones.
-
Se presenta en el Journal de matemáticas puras y aplicadas, la tesis doctoral de Jean Frenet, hablando de curvas en el espacio, aportando él seis fórmulas y Serret otras nueve
-
Fecha del la aparición del teorema de Stokes, posteriormente aparece el teorema de Green, que trata sobre uan particularidad del teorema de Stokes.
-
Bernhard Riemann contribuyó al análisis de la geometría diferencial, publicando "sobre la representación de una función por una serie trigonométrica", definiendo por primera vez la integral que lleva su nombre e iniciando la teoría de funciones de variable real.