-
Establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.
-
Tradicionalmente, se le atribuye a Euler el descubrimiento en 1752 de una propiedad de los poliedros convexos.1 Llamando S, A y F al número de vértices, aristas y caras, Euler demostró la relación de igualdad S-A+F=2, conocida hoy como característica de Euler. El resultado era sorprendente porque no hacía intervenir ni la longitud ni el área.
-
En 1813 Simon Antoine Jean L'Huillier se dio cuenta de que la fórmula de Euler se modificaba para un poliedro no convexo, con la forma, por ejemplo, de un sólido con agujeros (como el toro: S-A+F=2-2g, siendo g el número de agujeros).2 Éste es el primer cálculo de un invariante topológico que permitió clasificar las superficies del espacio
-
Gauss devuelve el carácter geométrico que impregna parte del análisis matemático, fundamentalmente con dos contribuciones: el nacimiento del análisis complejo y de la geometría diferencial.
-
Pero es sin duda la aparición de la geometría analítica lo que marca la Geometría en la Edad Moderna. Descartes propone un nuevo método de resolver problemas geométricos, y por extensión, de investigar en geometría.
-
El 10 de junio de 1854, Bernhard Riemann da una conferencia en la Universidad de Gotinga para completar su habilitación (grado que le permitiría optar a una plaza de catedrático). El tema de la conferencia fue la Geometría, a elección de Gauss, su protector y antiguo profesor durante la licenciatura y el doctorado.
-
En 1862, Lindemann demuestra que el número pi es trascendente, es decir, no puede ser raíz de ningún polinomio con coeficientes enteros. Esto implica que no es un número que pueda construirse con regla y compás, y demuestra que no es posible construir con sólo estos instrumentos un cuadrado de área igual a la de un círculo dado.
-
Felix Klein es la otra gran pieza clave de la Geometría en el siglo XIX. En 1871 descubrió que la geometría euclidiana y las no euclidianas pueden considerarse como casos particulares de la geometría de una superficie proyectiva con una sección cónica adjunta.