-
La primera fase, que comprende el periodo de 1700 a. de C. a 1700 d. de C., se caracterizó por la invención gradual de símbolos y la resolución de ecuaciones. Dentro de esta fase encontramos un álgebra desarrollada por los griegos (300 a. de C.)
-
Los árabes extendieron este método por Europa. Al algebrista Abu-Kamil (siglo IX y X) se le atribuye una obra donde trata la solución de ecuaciones lineales por simple y doble falsa posición.
El método de la doble falsa posición es el siguiente:
Sea la ecuación ax + b = 0 y supongamos dos valores para la x : x = m am + b = p x = n an + b = q -
La introducción de la notación simbólica asociada a Viète (1540-1603), marca el inicio de una nueva etapa en la cual Descartes (1596-1650) contribuye de forma importante al desarrollo de dicha notación. En este momento, el álgebra se convierte en la ciencia de los cálculos simbólicos y de las ecuaciones. Posteriormente, Euler (1707-1783) la define como la teoría de los "cálculos con cantidades de distintas clases"
-
Los egipcios nos dejaron en sus papiros (sobre todo en el de Rhid -1.650 a. de C- y el de Moscú -1.850 a, de C.-) multitud de problemas matemáticos resueltos. En una forma retórica, obtenían una solución realizando operaciones con los datos de forma análoga a como hoy resolvemos dichas ecuaciones. Las ecuaciones más utilizadas por los egipcios eran de la forma: x + ax = b
x + ax + bx = 0 -
Este fue el problema fundamental del álgebra durante el siglo XIX, entendiéndose como la búsqueda de las raíces de la ecuación con ayuda de operaciones racionales y la operación de la extracción de la raíz.
-