Teoría conjuntos

Origenes Terória de Conjuntos

  • John Wallis

    John Wallis

    La identificación de los números
    racionales con los números decimales periódicos.
  • William Rowan Hamilton

    William Rowan Hamilton

    Primeros trabajos sobre número irracionales
  • Fundamentación lógica de los números reales

    Fundamentación lógica de los números reales

    Impulsada por la necesidad de resolver y sustentar de modo adecuado algunos problemas específicos del Análisis, tales como la demostración de Bolzano para el Teorema del Valor Intermedio, el estudio de los límites, la prueba de suficiencia del Criterio de Cauchy para la convergencia y el estudio de las discontinuidades de funciones representables mediante series de Fourier.
  • Karl Weierstrass

    Karl Weierstrass

    Teoría de los irracionales
  • Charles Méray

    Charles Méray

    Pone de manifiesto el hecho que consiste en definir el número irracional como el límite de una sucesión de números racionales, sin tener demasiado en cuenta que la existencia misma del límite presupone una definición de los números reales.
  • Georg Cantor

    Georg Cantor

    Presenta su teoría de irracionales construídos a partir de sucesiones de racionales, seguido
  • Heine y Dedekind

    Heine y Dedekind

    Teoría de las cortaduras de racionales.
  • Joseph Liouville

    Joseph Liouville

    Se publica el método de Liuville para construir cualquier
    número dentro de una clase de números trascendentes.
  • Period: to

    Georg Cantor

    Plantea la no numerabilidad de los números reales y demuestra la enumerabilidad de los racionales, la no enumerabilidad de los reales y la enumerabilidad del conjunto de los números algebraicos,
  • Period: to

    George Cantor

    -Demuestra que los puntos de la recta real y los puntos
    del espacio n-dimensional son equipotentes
    -Continua su trabajo y entre 1878 y 1884 escribe una
    serie inigualable de artículos atacando los problemas de equipotencia, de los conjuntos totalmente ordenados.
    -Entre 1895 y 1897 desarrolla
    la teoría de los conjuntos totalmente ordenados
  • Carl Louis Ferdinand von Lindemann

    Carl Louis Ferdinand von Lindemann

    Se publica la prueba de Lindemann de la trascendencia de
    π
  • Otto Stolz

    Otto Stolz

    Mostró que cada número irracional tiene una representación decimal no periódica y que esa
    característica funcionaba como propiedad definitoria.
  • Richard Dedekind

    La teoría de los enteros
  • Hermann Grassmann

    Hermann Grassmann

    Demuestra propiedades básicas de los naturales y el principio de inducción matemática.
  • Paradoja de Russell

    Paradoja de Russell

    Propone que no puede existir un conjunto de todos los conjuntos que no se contienen a sí mismos como elementos.
  • Paradoja de Richard

    Paradoja de Richard

    La imposibilidad de obtener el conjunto de los números reales definibles en el lenguaje natural, por ejemplo en el español. Versa sobre la imposibilidad de obtener el conjunto de los números reales definibles mediante secuencias finitas del alfabeto español; mientras que en otra de sus versiones (ampliamente divulgada) la paradoja refiere a la imposibilidad de definir, de este mismo modo, todas las propiedades numéricas de los números naturales.
  • Paradoja de Berry

    Paradoja de Berry