-
En Sudáfrica, varios artistas adornan rocas con pinturas basadas en patrones geométricos
-
En África y Francia se desarrolla el conocimiento más temprano acerca de la cuantificación del tiempo.
-
En el valle del Nilo, alguien escribe el Hueso de Ishango, donde aparece posiblemente la referencia más temprana de número primos y multiplicación egipcia
-
En Mesopotamia, los sumerios inventan el primer sistema de numeración, y un sistema de pesos y medidas.
-
En Egipto se pone por escrito el conocimiento más temprano sobre el sistema decimal el cual permite contar indefinidamente introduciendo, si fuese necesario, nuevos símbolos.
-
En el valle del Indo, se pone por escrito el uso más temprano de la división decimal en un sistema uniforme de pesos y medidas antiguo.
-
En Egipto se inventa la agrimensura de precisión. El agrimensor era la persona encargada de delimitar parcelas y era de vital importancia no solo para mantener el orden territorial o realizar un correcto aparcelamiento de las zonas cultivables
-
En Babilonia se usa un sistema decimal de base 60 y cómputo del primer valor aproximado del número π como 3,125. Existen tablas con multiplicaciones, raíces cuadradas y cúbicas y otras cuentas.
-
En los Papiros de Berlín contiene una ecuación cuadrática con su solución.
-
En Egipto, el escriba Ahmes escribe el Papiro Rhind —basado en un escrito del 1850 a. C—. Allí presenta uno de los primeros conocimientos aproximados del valor de π de 3,16, el primer intento de la cuadratura del círculo, primeros conocimientos en el uso de una ordenación de la cotangente, y en la resolución de las ecuaciones lineales de primer orden.
-
Pitágoras estudia las relaciones entre las medias aritmética, geométrica y armónica; su grupo también descubre la irracionalidad de la raíz cuadrada de dos.
-
En India, matemáticos yainas escriben el Suria-prajinapti, un texto matemático en el cual se clasifican todos los números en tres grupos: numerables, innumerables e infinitos. También se reconocen cinco diferentes tipos de infinitos: infinito en uno y dos direcciones, infinito en área, infinito en todo lugar, e infinito perpetuo.
-
Textos de la India usan la palabra sánscrita shunia (‘vacío’) para referirse al concepto de (cero.
-
El griego Hiparco de Nicea desarrolla las bases de la trigonometría
-
En India, Aria Bhatta escribe el Aryabhatya siddhanta, el cual introduce las funciones trigonométricas y métodos de cálculo de valores numéricos aproximados. Define los conceptos de seno y coseno, y también contiene las primeras tablas con valores del seno y coseno (en intervalos de 3.75-grados desde 0 a 90 grados).
-
Brahmagupta inventa el método de resolución de ecuaciones indeterminadas de segundo grado y es el primero en usar el álgebra para la resolución de problemas astronómicos.
-
Al-Juarismi introduce técnicas algebraicas para la resolución de ecuaciones lineales y cuadráticas.
-
Abul Wáfa da la famosa fórmula sen (α + β) = sen α cos β + sen β cos α. También trata sobre la cuadratura del la parábola y el volumen de la paraboloide.
-
Bhaskara Acharya concibe el cálculo diferencial, y también desarrolla el teorema de Rolle, ecuación de Pell, una prueba para el Teorema de Pitágoras, prueba que la división por cero es infinita, calcula π a 5 lugares decimales, y calcula el tiempo tomado por la tierra para orbitar al sol con 9 lugares decimal.
-
Madhava es considerado el padre del análisis matemático, quien también trabajó en las series de potencias para p y para las funciones seno y coseno, y también con otros matemáticos escuela de Kerala, fundan el importante concepto de Cálculo.
-
Nilakantha Somayaji escribe el Tantra samgraha, el cual pone el fundamento para un completo sistema de fluxiones (derivadas), y expande conceptos de su texto previo, el Aryabhatiya bhashia.
-
Robert Recorde inventa el signo = y populariza en Inglaterra los símbolos + y –.
-
Rafael Bombelli realiza por primera vez cálculos con números complejos («imposibles»).
-
René Descartes descubre la geometría analítica
-
Primer uso del término número imaginario por René Descartes, fue propuesto para ser derogado.
-
Gottfried Leibniz descubre la técnica de separación de las variables para ecuaciones diferenciales ordinarias.
-
Leonhard Euler introduce la técnica del factor de integración para la resolución ecuaciones diferenciales ordinarias de primer orden.
-
Carl Friedrich Gauss pruebas el teorema fundamental del álgebra (cada ecuación polinomial tiene una solución among the números complejos)
-
Conceptos de función, límite y continuidad.Inicio de la Teoría de integración (cálculo de áreaspor medio del límite de una suma infinita). Variablecompleja.
-
Los classification of finite simple groups, un trabajo colaborativo involucrando algunos cientos de matemáticos y a lo largo de treinta años es completada.
-
El mayor número primo conocido, calculado con computadoras