Historia de la Química

  • 8000 BCE

    El hombre y sus primeros descubrimientos

    Los primeros materiales que usó el hombre
    Aún estaba el hombre en esta época de la piedra tallada cuando, unos 8.000 años a. de C, en la región que ahora conocemos como Oriente Medio.
  • 4000 BCE

    El hombre descubre los metales

    Hacia el año 4000 a. de C. El hombre empezaba a servirse de unos materiales relativamente raros.
    . A estos materiales se les conoce por el nombre de metales.
  • 2000 BCE

    La edad de bronce

    A la aleación (término que designa la mezcla de dos metales) de cobre y estaño se le llamó bronce, y hacia el año 2000 a. de C. ya era lo bastante común como para ser utilizado en la confección de armas y corazas. El acontecimiento histórico más conocido de la Edad del Bronce fue la guerra de Troya, en la que soldados con armas y corazas de bronce disparaban flechas con punta de este metal contra sus enemigos.
  • 600 BCE

    El elemento agua ( Tales )

    Tales fue un filósofo griego nacido en Mileto (Jonia), región situada en el Egeo, la costa oeste de lo que ahora es Turquía. Tales debió de plantearse la siguiente cuestión: si una sustancia puede transformarse en otra.. Quedaba entonces por decidir cuál era esa materia básica o elemento. Tales decidió que este elemento era el agua.
  • 570 BCE

    El elemento aire

    Tal pudo haber sido el razonamiento que llevó a Anaxímenes, también de Mileto, a la conclusión, hacia el 570 a. de C, de que el aire era el elemento constituyente del Universo. Postuló que el aire se comprimía al acercarse hacia el centro, formando así las sustancias más densas, como el agua y la tierra.
  • 380 BCE

    descubrimientos de los átomos

    Demócrito (aproximadamente 470-380 a. de C.), afincado en Abdera, ciudad al norte del Egeo, Llamó átomos, que significa «indivisible», a las partículas que habían alcanzado el menor tamaño posible.
  • 650

    La alquimia

    Después del 650 d. de C. el mantenimiento y la extensión de la alquimia greco-egipcia estuvo totalmente en manos de los árabes, situación que perduró durante cinco siglos. Quedan restos de este período en los términos químicos derivados del árabe: alambique, álcali, alcohol, garrafa, nafta, circón y otros.
  • 790

    alquimista musulmán fue Jabir ibn-Hayyan

    Vivió en la época en que el Imperio Árabe (con Harún al Raschid, famoso por Las mil y una noches) se hallaba en la cúspide de su gloria. Sus escritos fueron numerosos y su estilo era relativamente avanzado. Muchos de los libros que llevan su firma pueden haber sido escritos por alquimistas posteriores y atribuidos a él. Describió el cloruro de amonio y enseñó cómo preparar albayalde (carbonato de plomo).
  • 1000

    El fin de la alquimia

    Paracelso fue un alquimista de la vieja escuela, a pesar de su insistencia en contra de la transmutación. Aceptó los cuatro elementos de los griegos y los tres principios (mercurio, azufre y sal) de los árabes
    Paracelso mantenía que el fin de la alquimia no era el descubrimiento de técnicas de transmutación, sino la preparación de medicamentos que curasen las enfermedades. En la antigüedad lo más frecuentemente usado para estos fines eran las preparaciones con plantas.
  • La ley de Boyle

    La ley de Boyle, que estableció la relación de proporcionalidad inversa entre la presión y el volumen de un gas a temperatura constante, deriva del experimento ilustrado.Y excitaron en particular la curiosidad del químico irlandés Robert Boyle (1627-91), quien proyectó una bomba de aire más perfeccionada que la de Guericke. En vez de, por así decir, extraer el aire de un recipiente aspirándolo, probó el procedimiento opuesto de comprimirlo.
  • La nueva concepción de los elementos

    Boyle no estaba dispuesto a aceptar ciegamente las antiguas conclusiones que se habían deducido de los primeros principios.En lugar de ello, definía los elementos de una forma real, práctica cualquier supuesto elemento debería ser examinado con el fin de ver si era realmente simple.Si una sustancia podía descomponerse en sustancias más simples,no se trataba de un elemento,pero las sustancias más simples sí podían serlo,Pero Boyle se equivocó en esto;los metales demostraron ser elementos.
  • Los gases

    El químico inglés Stephen Hales dio un paso importante,a principios del siglo XVIII, al recoger gases sobre el agua. Los vapores formados como resultado de una reacción química pudieron conducirse,a través de un tubo,al interior de un recipiente que se había colocado lleno de agua y boca abajo en una jofaina con agua.El gas burbujeaba dentro del recipiente,desplazando el agua y forzándola a través del fondo abierto.Al final,Hales obtuvo un recipiente del gas o gases formados en la reacción.
  • Joseph Black

    El químico escocés Joseph Black (1728-99) dio otro importante paso adelante. Lo que hizo fue calentar fuertemente la piedra caliza (carbonato cálcico). Este carbonato se descompuso, liberando un gas y dejando cal (óxido de calcio) tras de sí. El gas liberado pudo recombinarse con el óxido de calcio para formar de nuevo carbonato cálcico
  • Hidrógeno

    Henry Cavendish,en 1766, fue el primero en investigar sus propiedades sistemáticamente. Por eso se le atribuye por lo general el mérito de su descubrimiento. Dicho gas recibió más tarde el nombre de hidrógeno.
  • La combustión

    Fue Lavoisier quien dio a este gas su nombre, oxígeno, derivado de los vocablos que en griego significan «productor de ácidos», pues Lavoisier tenía la idea de que el oxígeno era un compuesto necesario de todos los ácidos. En esto, como se demostró posteriormente, estaba equivocado.
  • el químico escocés Daniel Rutherford

    experimento con el dióxido de carbono. Rutherford informó de este experimento en 1772,Rutherford llamó al gas que había aislado «aire flogisticado». Hoy día lo llamamos nitrógeno, y concedemos a Rutherford el crédito de su descubrimiento.
  • Joseph Priestley

    ministro unitario que estaba profundamente interesado, por afición, en la química.
    En 1774, el uso del mercurio en su trabajo con los gases dio lugar al descubrimiento más importante de Priestley. El mercurio, cuando se calienta en el aire, forma un «calcinado» de color rojo ladrillo (que ahora llamamos óxido de mercurio).
  • Axel Fredric Cronstedt ,Johann Gottlieb Gahn y Peter Jacob Hjelm

    En 1751, Axel Fredric Cronstedt descubrió un metal muy semejante, el níquel; Johann Gottlieb Gahn aisló el manganeso en 1774, y Peter Jacob Hjelm aisló molibdeno en 1782.
  • Tratado elemental de Química

    En 1789 Lavoisier publicó un libro (Tratado elemental de Química) que aportó al mundo una visión unificada del conocimiento químico en base a sus nuevas teorías y nomenclatura. Fue el primer texto moderno de química. Entre otras cosas, el libro incluía una lista de todos los elementos conocidos hasta entonces (o, más bien, de todas las sustancias que Lavoisier consideró elementos según el criterio de Boyle, y que no pudo descomponer en otras más sencillas)
  • La ley de Proust

    . Proust llegó a demostrar que una situación similar prevalecía también para muchos otros compuestos, y formuló la generalización de que todos los compuestos contenían elementos en ciertas proporciones definidas y no en otras combinaciones, independientemente de las condiciones bajo las que se hubiesen formado. Esto se llamó la ley de las proporciones definidas o, a veces, ley de Proust.
  • El físico italiano Alessandro Volta

    avanzó un paso más. En 1800 halló que dos metales (separados por soluciones capaces de conducir una carga eléctrica) podían disponerse de modo que una nueva carga se crease tan pronto como la vieja se alejase a lo largo de un alambre conductor. De este modo inventó la primera batería eléctrica y produjo una corriente eléctrica. La corriente eléctrica se mantenía gracias a la reacción química que implicaba a los dos metales y a la solución intermedia.
  • Pesos y símbolos

    Hacia 1807, Berzelius se lanzó a determinar la constitución elemental exacta de distintos compuestos. Mediante cientos de análisis, proporcionó tantos ejemplos de la ley de las proporciones definidas que el mundo de la química no podría dudar más de su validez y tuvo que aceptar
  • La teoría de Dalton 2

    En 1808 publicó Un Nuevo Sistema de Filosofía Química, en el que discutía con gran detalle su teoría atómica. En ese mismo año su ley de las proporciones múltiples quedó ratificada por las investigaciones de otro químico inglés, William Hyde Wollaston (1766-1828). A partir de entonces Wollaston prestó el apoyo de su influencia a la teoría atómica, y con el tiempo la opinión de Dalton ganó una aceptación general.
  • Hipótesis de Avogadro

    Si se tiene en cuenta esta hipótesis, es posible distinguir con claridad entre átomo de hidrógeno y moléculas de hidrógeno (un par de átomos), e igualmente entre los átomos y las moléculas de otros gases.
  • Electrólisis

    A un químico inglés, Humphrey Davy (1778-1829), se le ocurrió que lo que no podía separarse por compuestos químicos podría ser forzado por el extraño poder de la corriente eléctrica, que lograba escindir la molécula de agua con facilidad cuando los compuestos químicos resultaban totalmente ineficaces.
  • La teoría de Dalton

    El químico inglés John Dalton (1766-1844) consideró detenidamente esta cadena de razonamientos, ayudado por un descubrimiento propio. Dos elementos, averiguó, pueden combinarse, después de todo, en más de una proporción, en cuyo caso exhiben una gran variación de proporciones de combinación y en cada variación se forma un compuesto diferente.
  • La crisis del vitalismo

    Muchos químicos de aquella época consideraban la vida como un fenómeno especial que no obedecía necesariamente las leyes del universo tal como se aplicaban a los objetos inanimados. La creencia en esta posición especial de la vida se llama vitalismo, y había sido intensamente predicada un siglo antes por Stahl, el inventor del flogisto. A la luz del vitalismo, parecía razonable suponer que era precisa alguna influencia especial (una «fuerza vital»), operando solamente sobre los tejidos vivos.
  • Pesos y símbolos 2

    En este proyecto, Berzelius hizo uso de los hallazgos de Dulong y Petit y de Mitscherlich, así como de la ley de los volúmenes de combinación de Gay-Lussac. (No utilizó, sin embargo, la hipótesis de Avogadro.) La primera tabla de pesos atómicos de Berzelius, publicada en 1828,Una diferencia importante entre la tabla de Berzelius y la de Dalton fue que los valores de Berzelius no eran, por lo general, números enteros.
  • Electrosis 1ra y 2da ley

    En 1832 pudo proclamar la existencia de ciertas relaciones cuantitativas en electroquímica. Su primera ley de la electrólisis estableció que la masa de sustancia liberada en un electrodo durante la electrólisis es proporcional a la cantidad de electricidad que se hace pasar a través de la solución. Su segunda ley de la electrólisis afirma que el peso de metal liberado por una cantidad dada de electricidad es proporcional al peso equivalente del metal.
  • Michael Faraday

    Faraday, trabajando en electroquímica, introdujo una serie de términos que se utilizan todavía en la actualidad . Fue, por ejemplo, quien propuso el nombre de electrólisis para la ruptura de moléculas por una corriente eléctrica. A sugerencia del erudito inglés William Whewell (1794-1866), Faraday llamó electrolitos a los compuestos o soluciones capaces de transportar una corriente eléctrica.
  • La teoría de los tipos

    Auguste Laurent (1807-53), consiguió sustituir por átomos de cloro algunos de los átomos de hidrógeno existentes en la molécula de alcohol etílico. Este experimento asestó el golpe mortal a la teoría de Berzelius, ya que el cloro se consideraba negativo y el hidrógeno positivo, y sin embargo se podía sustituir el uno por el otro sin que cambiasen de forma drástica las propiedades del compuesto.
  • Valencia

    En 1852 Frankland propuso lo que después llegaría a conocerse como teoría de la valencia (de la palabra latina que significa «poder»): cada átomo tiene un poder de combinación fijo.el concepto de valencia ayudó a clarificar la diferencia entre peso atómico y peso equivalente de un elemento.
  • Disociación iónica

    En 1853, el físico alemán Johann Wilhelm Hittorf (1824-1914) señaló que algunos iones viajaban más rápidamente que otros. Esta observación condujo al concepto de número de transporte, la velocidad a la que los distintos iones transportaban la corriente eléctrica. Pero el cálculo de esta velocidad no resolvía la cuestión de la naturaleza de los iones.
  • Heinrich Geissler

    en 1855, un soplador de vidrio alemán, Heinrich Geissler (1814-79), ideó un método para producir vacíos más altos que los que se habían obtenido hasta entonces. Preparó recipientes de vidrio, haciendo el vacío en ellos.
  • La nueva metalurgia

    Bessemer, un metalúrgico inglés, estaba intentando diseñar un proyectil de artillería que girase sobre su eje durante el vuelo y se desplazase según una trayectoria predecible con exactitud.
    En 1856 dio a conocer su alto horno.
  • Jean Servais Stas

    En la década de 1860, por ejemplo, el químico belga Jean Servais Stas (1813-91) determinó los pesos atómicos con más exactitud que Berzelius. Más tarde, a comienzos del siglo xx, el químico americano Theodore William Richards (1869-1928), tomando fantásticas precauciones, encontró valores que podrían representar la última aproximación posible por métodos puramente químicos. Los símbolos químicos del carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre son C, H, O, N, P y S.
  • La tabla periódica,Los elementos en desorden

    Kekulé,propuso una conferencia de químicos importantes de toda Europa para discutir el asunto. Como resultado de ello se convocó la primera reunión científica internacional de la historia. Se llamó Primer Congreso Internacional de Química y se reunió en 1860 en la ciudad de Karlsruhe, en Alemania.
  • Fórmulas estructurales

    Las fórmulas estructurales hacían gala de una utilidad tan obvia que muchos químicos las aceptaron inmediatamente.un químico ruso, Alexander Mijailovich Butlerov (1828-86), apoyó el nuevo sistema. Durante la década de 1860 señaló cómo el uso de las fórmulas estructurales podía explicar la existencia de isómeros.
  • Fórmulas estructurales 2

    Un día de 1865 (según el mismo Kekulé), medio dormido en un ómnibus, le pareció ver átomos ejecutando una danza. De pronto, la cola de una cadena se unió a su cabeza y formó un anillo circular. Hasta entonces, las fórmulas estructurales se habían formado solamente con cadenas de átomos de carbono, pero ahora Kekulé pensó también en la posibilidad de anillos de carbono. Sugirió la siguiente fórmula estructural
  • La tabla periódica,Los elementos en desorden

    Stanislao Cannizzaro , había topado con e trabajo de su compatriota Avogadro. Comprendió que la hipótesis de Avogadro podía utilizarse para distinguir entre peso atómico y peso molecular de los elementos gaseosos importantes,y que esta distinción serviría para aclarar la cuestión de los pesos atómicos de los elementos en general. Además,comprendió la importancia de distinguir cuidadosamente el peso atómico del peso equivalente.En el Congreso hizo una gran exposición del tema.
  • La tabla periódica

    Mendeleiev publicó su tabla en 1869, un año antes de que Meyer publicase su trabajo. Pero la razón de que la mayor parte del mérito en el descubrimiento de la tabla periódica se le haya atribuido a él y no a los demás contribuyentes, no es sólo una cuestión de prioridad, sino que reside en el uso espectacular que Mendeleiev hizo de su tabla.
  • La organización de los elementos

    En 1864, el químico inglés John Alexander Reina Newlands (1837-98) ordenó los elementos conocidos según sus pesos atómicos crecientes, y observó que esta ordenación también colocaba las propiedades de los elementos en un orden, al menos parcial. Al disponer los elementos en columnas verticales de siete, los que eran semejantes tendían a quedar en la misma fila horizontal
  • William Crookes

    El físico inglés William Crookes (1832-1919) ideó en 1875 un tubo con un vacío más perfecto (un tubo de Crookes), que permitía estudiar con mayor facilidad el paso de la corriente eléctrica a través del vacío. Parecía bastante claro que la corriente eléctrica se originaba en el cátodo y viajaba hasta el ánodo, donde chocaba con el vidrio que estaba junto a él y producía luminiscencia.
  • Moléculas tridimensionales

    El átomo tetraédrico explicaba tantas cosas y de forma tan clara que fue rápidamente aceptado. Contribuyó a ello el libro publicado en 1887 por el químico alemán Johannes Adolf Wislicenus (1835-1902), que colocaba la autoridad de un antiguo y muy respetado científico en apoyo de la teoría
  • Eugen Goldstein

    ». En realidad, en 1876, el físico alemán Eugen Goldstein (1850-1930) llamó al flujo rayos catódicos. Parecía natural suponer que los rayos catódicos podían ser una forma de luz, y estar formados por ondas. Las ondas viajaban en línea recta, como la luz, y, lo mismo que ésta, no parecían afectadas por la gravedad
  • La organización de los elementos 2

    Más éxito tuvo el químico alemán Julius Lothar Meyer (1830-95). Meyer consideró el volumen ocupado por determinados pesos fijos de los diversos elementos. En tales condiciones, cada peso contenía el mismo número de átomos de su elemento. Esto significaba que la razón de los volúmenes de los diversos elementos era equivalente a la razón de los volúmenes de los átomos simples que componían a dichos elementos.
  • Termodinámica química

    El físico americano Josiah Willard Gibbs (1839-1903) estaba aplicando sistemáticamente las leyes de la termodinámica a las reacciones químicas y publicó una serie de largos trabajos sobre el tema entre los años 1876 y 1878.
  • Charles Martin Hall

    En 1886, sin embargo, el joven estudiante de química americano Charles Martin Hall (1863-1914), oyendo a su profesor decir que quien descubriese un medio barato de fabricar aluminio se haría rico y famoso, decidió emprender la tarea. Trabajando en el laboratorio de su casa, descubrió que el óxido de aluminio podía disolverse en un mineral fundido llamado criolita. Una vez que el óxido estaba en solución, la electrólisis producía el propio aluminio.
  • Radiactividad

    Roentgen sacó la conclusión de que cuando los rayos catódicos chocaban con el ánodo se creaba alguna forma de radiación que podía pasar a través del vidrio del tubo y del cartón que lo rodeaba, y chocar con los materiales circundantes.Roentgen llamó a esta penetrante radiación rayos X, denominación que se ha conservado hasta la actualidad.
  • Joseph John Thomson

    En 1897, el físico inglés Joseph John Thomson (1856-1940), trabajando con tubos de alto vacío, logró finalmente demostrar la deflexión de los rayos catódicos en un campo eléctrico. Ese fue el eslabón final en la cadena de pruebas, y a partir de entonces hubo que aceptar que los rayos catódicos eran corrientes de partículas que transportaban una carga eléctrica negativa.
  • Los nuevos elementos por grupos

    En 1898, Ramsay hirvió aire líquido cuidadosamente buscando muestras de gases inertes, que él esperaba burbujeasen primero. Encontró tres, que llamó neón («nuevo»), criptón («oculto») y xenón («extranjero»). Los gases inertes fueron considerados al principio como mera curiosidad, de interés solamente para químicos encerrados en su torre de marfil.
  • Marie Sklodowska Curie

    la primera mujer científica de renombre, dio a este fenómeno el nombre de radiactividad. Determinó que no era todo el compuesto de uranio, sino específicamente el átomo de uranio, el que era radiactivo. Tanto si el átomo se hallaba en su forma de elemento, como si formaba parte de un compuesto, era radiactivo. En 1898 descubrió que el torio, un metal pesado, era también radiactivo.
  • La frontera entre lo orgánico y lo inorgánico

    El químico inglés Frederick Stanley Kipping (1863-1949) empezó a investigar en 1899 sobre los compuestos orgánicos que contenían el elemento silicio, que, junto con el oxígeno, es el elemento más común en la corteza terrestre. Durante un período de cuarenta años consiguió sintetizar un gran número de compuestos orgánicos que contenían uno o varios de estos átomos, tan característicos del mundo inorgánico.
  • Resonancia

    La resonancia también contribuía a explicar un grupo de compuestos extraños con los que se había topado la química a comienzos del siglo xx. En 1900, el químico ruso-americano Moses Gomberg (1866-1947) estaba tratando de preparar el hexafeniletano, un compuesto con una molécula que consistía en dos átomos de carbono a los que estaban unidos seis anillos bencénicos (tres a cada átomo de carbono).
  • Alfred Stock

    El químico alemán Alfred Stock (1876-1946) comenzó a estudiar los hidruros de boro (compuestos de boro e hidrógeno) en 1909 y halló que podían formarse compuestos extraordinariamente complicados, análogos en algunos sentidos a los hidrocarburos. Desde la Segunda Guerra Mundial los hidruros de boro han alcanzado un uso inesperado como aditivos del combustible de los cohetes, a fin de incrementar el empuje que proyecta la nave hacia las capas superiores de la atmósfera y al espacio exterior.
  • nuevas investigaciones

    Las investigaciones que comenzaron en 1910, el químico francés Georges Claude mostró que una corriente eléctrica forzada a través de ciertos gases como el neón producía una luz suave y coloreada. Los tubos llenos con dicho gas podían moldearse formando las letras del alfabeto, palabras o dibujos. En la década de 1940, las bombillas de luz incandescente de la celebrada Great White Way y otros centros de diversión semejantes de la ciudad de Nueva York,fueron reemplazados por luces de neón.
  • El átomo nucleado Número atómico

    por primera vez fue posible predecir exactamente cuántos elementos quedaban por descubrir. Todos los números atómicos desde el 1 al 92 estaban ya ocupados por elementos conocidos en 1913, excepto siete: los números atómicos 43, 61, 72, 75, 85,87 y 91. En 1917 se descubrió el protactinio (número atómico 91). En 1923 se descubrió el hafnio (número atómico 72), y en 1925, el renio (número atómico 75).
  • Kotaro Honda

    En 1916 el metalúrgico japonés Kotaro Honda (1870-1954) vio que añadiendo cobalto al acero al tungsteno se producía una aleación capaz de formar un imán más potente que el acero ordinario. Este descubrimiento abrió el camino a la obtención de aleaciones magnéticas más potentes todavía.
  • La nueva metalurgia 2

    En 1919 el inventor americano Elwoor Haynes (1857-1925) patentó el acero inoxidable, que contenía cromo y níquel.
  • Isótopos

    En 1935, el físico canadiense-americano Arthur Jeffrey Dempster (1886-1950) halló, por ejemplo, que el uranio, tal como se presentaba en la naturaleza, era una mezcla de dos isótopos, a pesar de que su peso atómico (238,07) se aproximaba a un número entero. Se debía precisamente a que uno de los isótopos existía en una proporción mucho mayor. Un 99,3 por 100 de los átomos de uranio tenían núcleos formados por 92 protones y 146 neutrones, o lo que es lo mismo, un número másico total de 238.
  • Reacciones nucleares, Bombas nucleares

    Fermi, que había abandonado Italia en 1938 y había marchado a los Estados Unidos, fue encargado de esta tarea. El 2 de diciembre de 1942, una pila atómica de uranio, óxido de uranio y grafito alcanzó el tamaño «crítico». La reacción en cadena se mantenía, produciendo energía a través de la fisión de uranio. Hacia 1945 se fabricaron ciertos dispositivos en los que al explotar una pequeña carga de explosivo se juntan dos trozos de uranio.
  • Bombas nucleares

    En julio de 1945 se hizo explotar en Alamogordo, Nuevo Méjico, la primera «bomba atómica» o «bomba-A» (más exactamente denominada una bomba de fisión). Un mes después se fabricaron e hicieron explotar dos bombas más sobre Hiroshima y Nagasaki, en Japón, al final de la Segunda Guerra Mundial.