Download

Historia de la geometría

  • Period: 2000 BCE to 500 BCE

    La cultura en Mesopotamia

    En la Mesopotamia se tiene registro de algunos avances tales como: el cálculo de áreas, del cuadrado, del círculo (con un valor aproximado de 3 para el número π), cálculo de volúmenes de cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, como un principio general.
  • Period: 2000 BCE to 500 BCE

    La cultura en Egipto

    Según Herodoto los egipcios fueron los padres de la geometría. Considerando las grandes construcciones que llevaron a cabo los egipcios se podría esperar una geometría muy avanzada. Se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, un valor aproximado para el área del círculo, considerando π como 3.1605. El desarrollo geométrico de los egipcios adolece de teoremas y demostraciones formales
  • Period: 800 BCE to 400

    La cultura en Grecia

    Los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Se realizaban operaciones con números enteros, la extracción numérica de raíces, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo relacionados con la construcción, geometría, agrimensura, etc...
  • Thales de Mileto.
    600 BCE

    Thales de Mileto.

    Es uno de los 7 sabios de la antigüedad, se destacó tanto en filosofía como en matemáticas. Se le atribuyen las primeras demostraciones de teoremas geométricos mediante el razonamiento lógico.
    Fundó la geometría como una ciencia que compila una colección de proposiciones abstractas acerca de formas ideales y pruebas de estas proposiciones. Fue el primero en ser capaz de calcular la altura de las pirámides de Egipto.
  • Pitágoras de Samos
    600 BCE

    Pitágoras de Samos

    Fundó su famosa escuela pitagórica en Crotona, al sur de Italia, se discutía filosofía, matemáticas y ciencias naturales. Estudiaron los números enteros y su clasificación. También se les atribuye la demostración del teorema de Pitágoras y como consecuencia, el descubrimiento de los números irracionales como √2, √3, etc.
    Nota: En estos tiempos aún no hay una distinción muy clara entre la aritmética y la geometría.
  • Pitagóricos
    600 BCE

    Pitagóricos

    Distinguieron algunas clases de números, de acuerdo con las características siguientes:
    *Primitiva
    *Números perfectos
    *Números amigos
    *Números poligonales
  • Herodoto
    500 BCE

    Herodoto

    Utilizó por primera vez la palabra griega geometría (medida de la tierra) en su gran épica sobre las guerras persas, en donde escribe que en el antiguo Egipto fue usada "la geometría" para encontrar la distribución adecuada de la tierra después de los desbordamientos anuales del Nilo.
  • Eudoxo de Cnidos
    400 BCE

    Eudoxo de Cnidos

    Es conocido por sus trabajos sobre la teoría de la proporción y el llamado método de exhausción, aportaciones que hicieron posible determinar áreas y volúmenes rigurosamente, y fueron el antecedente del Cálculo Integral.
  • Period: 400 BCE to 300 BCE

    Euclides

    La geometría clásica griega ha sobrevivido a través de la famosa obra escrita por él, conocida como los Elementos de Euclides. Esta obra está compuesta de trece libros y es considerada como la obra más famosa de la historia de las matemáticas. Es considerado por ello como el padre de la Geometría.
  • Apolonio de Perga
    300 BCE

    Apolonio de Perga

    Escribió un tratado en ocho tomos sobre las cónicas y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas hasta los tiempos del filósofo y científico francés René Descartes en el siglo XVII.
  • Arquímedes de Siracusa
    300 BCE

    Arquímedes de Siracusa

    Realizó importantes aportaciones a la geometría. Inventó la forma de medir el área de superficies limitadas por figuras curvas y el volumen de sólidos limitados por superficies curvas. También elaboró un método para calcular una aproximación al número π
  • Las culturas china e india
    1 CE

    Las culturas china e india

    Principalmente hicieron aportaciones sobre la resolución de problemas de distancias y semejanzas de cuerpos. También hay quien afirma que estas dos civilizaciones llegaron a enunciados de algunos casos particulares del teorema de Pitágoras e incluso que desarrollaron algunas ideas sobre la demostración de este teorema.
  • Period: 101 to 1101

    El avance fue...

    La geometría avanzó muy poco desde finales de la era griega hasta finales de la edad media.
  • Period: 101 to 1101

    Al Mahani

    Originario de la región de Kirman, que estudió los problemas de la división de la esfera según la ecuación cúbica que lleva su nombre.
  • Period: 101 to 1101

    Quadrivium

    Pitágoras dividía la ciencia matemática en cuatro partes: la aritmética, la música, la geometría y la astronomía, lo que se llamó el "quadrivium" que fue adoptado por Platón, consiste en:
    aritmética (números en reposo);
    geometría (magnitudes en reposo);
    música (números en movimiento)
    astronomía (magnitudes en movimiento).
  • Boecio
    501

    Boecio

    Dedicó parte de su producción a la traducción, recopilación o composición de manuales relacionados con el quadrivium (ya aludimos a su compilación de la Aritmética de Nicómaco), obras que sirvieron para mantener vivas ciertas nociones del saber antiguo durante los tiempos medievales, por la difusión que alcanzaron esos escritos.
  • Geber: Jabir ibn Hayyan
    776

    Geber: Jabir ibn Hayyan

    Fue el primero que introdujo la alquimia en Europa.
  • Triángulo de Khayyam
    950

    Triángulo de Khayyam

    El triangulo de Pascal era conocido mucho antes; se remonta a aproximadamente el año 950 en un comentario sobre un antiguo libro indio llamado el Chandas Sastra. También era conocido por los matemáticos persas Al-Karaji y Omar Khayyam, y se conoce como el «triángulo de Khayyam» en el Irán moderno.
  • Omar Khayyam
    1075

    Omar Khayyam

    Clasificó las ecuaciones cúbicas en 14 tipos, y demostró cómo resolver cada tipo utilizando cónicas en su obra Sobre las demostraciones de los problemas de álgebra y comparación.
    Resolvió todos los tipos posibles de cúbicas mediante métodos geométricos sistemáticos.
  • Nassir al-Din al-Tusi
    1201

    Nassir al-Din al-Tusi

    Escribió libros sobre geometría directamente influenciados por las obras clásicas, pero contribuyó con distintas generalizaciones y estudios críticos, como los relativos al axioma euclidiano del paralelismo, que pueden considerarse como estudios precursores de las geometrías no euclidianas.
  • Leonardo de Pisa
    1201

    Leonardo de Pisa

    Podemos considerar su libro "Geometría práctica" como el punto de arranque de la geometría renacentista. Esta obra está dedicada a resolver determinados problemas geométricos, especialmente sobre la medida de áreas de polígonos y volúmenes de cuerpos.
  • Jordano Nemorarius
    1201

    Jordano Nemorarius

    A quien debemos la primera formulación correcta del problema del plano inclinado.
  • Nicolás Oresme
    1301

    Nicolás Oresme

    Llegó a utilizar en una de sus obras coordenadas rectangulares, aunque de forma rudimentaria, para la representación gráfica de ciertos fenómenos físicos.
  • Pierre de Fermat

    Pierre de Fermat

    Presentó un trabajo con una reformulación de las obras griegas clásicas, fundamentalmente de las Cónicas de APOLONIO, utilizando las técnicas algebraicas desarrolladas en el siglo XVI.
    Desarrolló de manera independiente a los trabajos de René Descartes una geometría de coordenadas, pero a diferencia de éste, pensaba en la geometría analítica sólo como una extensión de las ideas de Euclides y Apolonio
  • Descartes

    Descartes

    Creaba un nuevo método para el abordaje de antiguos y nuevos problemas que rompía con la tradición heredada de la geometría griega y que situaba al álgebra en el centro de la matemática.
    Introdujo el estudio de las secciones cónicas, representó las secciones cónicas a través de ecuaciones de segundo grado en dos variables, creando la geometría analítica. Introdujo también el sistema coordenado de referencia, llamado sistema cartesiano, entre otras aportaciones.
  • Gottfried Wilhelm Leibniz

    Gottfried Wilhelm Leibniz

    En un artículo que publicó Leibniz en 1679, llamado analysis situs o geometria situs, propuso en la formulación de algunas propiedades de las formas geométricas, el uso de símbolos especiales para representarlos y la combinación de estas propiedades para crear otras. Con esta propuesta Leibniz sentó las bases para lo que actualmente se conoce como Topología. La topología es asociada generalmente a los estudios de las propiedades cualitativas de los objetos geométricos.
  • Descartes

    Descartes

    DESCARTES publicó en 1637 la Geometría como tercer apéndice, junto con la DIÓPTRICA y los Meteoros, a su obra fundamental, el Discurso del Método, para dirigir bien la razón y buscar la verdad en las ciencias o, simplemente, el Discurso del método, obra en la que sienta las bases del racionalismo moderno.
  • Pascal

    Pascal

    El triángulo de números se denomina Triángulo de Pascal porque fue estudiado por Pascal en 1655.
  • Fermat

    Fermat

    Publicación de su artículo “Introducción a los
    lugares planos y sólidos”.
  • Leonhard Euler

    Leonhard Euler

    Introdujo coordenadas rectangulares en espacio, oblicuas y polares. Planteó transformaciones sistemas coordenados. Clasificó curvas con grado de ecuaciones. Trató secciones cónicas, formas canónicas y clasificó curvas de tercer y cuarto orden. Estudió tangentes, problemas de curvaturas, diámetros y simetrías, semejanzas y propiedades afines, intersección de curvas, composición ecuaciones de curvas complejas y trascendentes, resolución general ecuaciones trigonométricas.
  • Alejo Claude Clairaut

    Alejo Claude Clairaut

    A comienzos de siglo ya habían sido estudiados muchos fenómenos de las curvas planas por medio del análisis infinitesimal, para pasar posteriormente a estudiar las curvas espaciales y las superficies. Este traspaso de los métodos de la geometría bidimensional al caso tridimensional fue realizado por Clairaut.
  • Gaspard Monge

    Gaspard Monge

    Los métodos de la geometría descriptiva surgieron en el dominio de las aplicaciones técnicas de la matemática y su formación como ciencia matemática especial, en el texto de Monge: "Géometrie descriptive". En la obra se aclara, en primer lugar, el método y objeto de la geometría descriptiva, prosiguiendo, con instrucciones sobre planos tangentes y normales a superficies curvas. Analiza la intersección de superficies curvas y la curvatura de líneas y superficies.
  • Leonhard Euler

    Leonhard Euler

    Publicación segundo tomo de la obra "Introducción al análisis de los infinitos", que Euler dedicó exclusivamente a la geometría analítica.
  • Nicolai Ivanovich Lobachevsky y János Bolyai

    Nicolai Ivanovich Lobachevsky y János Bolyai

    Desarrollo de las geometrías no euclideanas. Publicaron en forma independiente que habían podido construir una geometría que satisfacen todos los postulados de la geometría Euclidiana excepto por el postulado de las paralelas. Por lo que este postulado se ganó el estatus de un axioma que caracteriza a la geometría Euclidiana.
  • William Rowan Hamilton

    William Rowan Hamilton

    Desarrolló lo que hoy conocemos como producto vectorial o producto cruz de vectores como un resultado alterno de su trabajo con el álgebra de los cuaternios.
  • Hipatia

    Hipatia

    autora de –al menos– tres trabajos: un comentario a la Aritmética de Diofanto de Alejandría, el Canon Astronómico y un comentario a las Secciones Cónicas de Apolunio de Perga.
  • Henri Poincaré

    Henri Poincaré

    Describió un modelo concreto de una geometría No-Euclidiana en dos dimensiones, el plano hiperbólico; este modelo es conocido ahora como el disco de Poincaré.