Timeline

Atomic Timeline

  • Atomic Timeline Overview

    Atomic Timeline Overview
    It was in the early 1800s that John Dalton, an observer of weather and discoverer of color blindness among other things, came up with his atomic theory. Let's set the stage for Dalton's work. Less than twenty years earlier, in the 1780's, Lavoisier ushered in a new chemical era by making careful quantitative measurements which allowed the compositions of compounds to be determined with accuracy. By 1799 enough data had been accumulated for Proust to establish the Law of Constant Composition ( al
  • Dalton

    Dalton
    It was in the early 1800s that John Dalton, an observer of weather and discoverer of color blindness among other things, came up with his atomic theory. Let's set the stage for Dalton's work. Less than twenty years earlier, in the 1780's, Lavoisier ushered in a new chemical era by making careful quantitative measurements which allowed the compositions of compounds to be determined with accuracy. By 1799 enough data had been accumulated for Proust to establish the Law of Constant Composition ( al
  • Thomson

    Thomson
    In 1897 the British physicist Joseph John (J. J.) Thomson (1856–1940) discovered the electron in a series of experiments designed to study the nature of electric discharge in a high-vacuum cathode-ray tube, an area being investigated by numerous scientists at the time. Thomson interpreted the deflection of the rays by electrically charged plates and magnets as evidence of "bodies much smaller than atoms" that he calculated as having a very large value for the charge-to-mass ratio. Later he estim
  • Rutherford

    Rutherford
    Ernest Rutherford publishes his atomic theory describing the atom as having a central positive nucleus surrounded by negative orbiting electrons. This model suggested that most of the mass of the atom was contained in the small nucleus, and that the rest of the atom was mostly empty space. Rutherford came to this conclusion following the results of his famous gold foil experiment. This experiment involved the firing of radioactive particles through minutely thin metal foils (notably gold) and de
  • Bohr

    Bohr
    The Bohr Model is probably familar as the "planetary model" of the atom illustrated in the adjacent figure that, for example, is used as a symbol for atomic energy (a bit of a misnomer, since the energy in "atomic energy" is actually the energy of the nucleus, rather than the entire atom). In the Bohr Model the neutrons and protons (symbolized by red and blue balls in the adjacent image) occupy a dense central region called the nucleus, and the electrons orbit the nucleus much like planets orbit
  • Quantum Mechanical Model

    Quantum Mechanical Model
    The quantum mechanical model is based on quantum theory, which says matter also has properties associated with waves. According to quantum theory, it’s impossible to know the exact position and momentum of an electron at the same time. This is known as the Uncertainty Principle. The quantum mechanical model of the atom uses complex shapes of orbitals (sometimes called electron clouds), volumes of space in which there is likely to be an electron. So, this model is based on probability rather tha