-
Мадхава смогла вычислить \pi как 3,14159265359, верно определив 11 цифр в числах. Этот рекорд был побит в 1424 году персидским математиком Джамшидом аль-Каши, который в своем труде под названием «Трактат об окружности» привёл 17 цифр числа \pi, из которых 16 верных.
-
Впервые обозначением этого числа греческой буквой \pi~ воспользовался британский математик Джонс в 1706 году.
-
Адриен Мари Лежандр в 1774 году доказал иррациональность \pi^2
-
В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел \pi и \pi^2.
-
\pi может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.
-
-
-
В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа \pi и e^{\pi\sqrt n} алгебраически независимы, откуда, в частности, следует трансцендентность чисел \pi+e^\pi,\pi e^\pi и e^{\pi\sqrt n}.